Developing human pluripotent stem cells for investigation and treatment of hypoparathyroidism

Awardee: Rene Maehr, PhD

Institution: Umass Medical School

Award Amount: $500,000

Funding Period: January 1, 2020 -December 31, 2020


Summary:

The parathyroid gland is critically involved in regulation of calcium homeostasis of the body. Hypoparathyroidism as encountered by parathyroid damage, hypoplasia, or as a result of thyroid and parathyroid surgery, results in chronic hypocalcemia and low-turnover bone disease. Human pluripotent stem cells could provide a virtually unlimited source of parathyroid-like cells with calcium level responsiveness, offering a unique opportunity for development of a cell replacement products capable of regulating calcium levels. To unlock human pluripotent stem cell-based treatment strategies, robust and safe stem cell differentiation protocols need to be established. Here, we propose to develop an approach that is based on human pluripotent stem cell differentiation according to a developmental roadmap, and cutting edge humanized mouse avatar models for functional evaluation of human parathyroid-like cells. We expect this rigorous approach to provide several high-impact resources, including a source of high-fidelity human parathyroid-like cells and novel mouse models for studying parathyroid function.

Publication:

Integration of single-cell transcriptomes and chromatin landscapes reveals regulatory programs driving pharyngeal organ development - Nature Communitcations

Previous
Previous

A working prototype of an in-home ionized calcium monitoring device using a paper-based ion-selective optode and an optical reader

Next
Next

In vitro differentiation of parathyroid cells from stem cells